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■Introduction 
 

Analog design is often a major bottleneck in the production of integrated circuits. The 

ability to overcome this bottleneck can have a major impact on the commercial success 

of a company. The first company whose product is designed into a socket almost 

always wins the majority of the business and sets future standards.  The competition 

can subsequently win market share only by offering improved performance or lower 

cost.   

 

An important component of the analog design bottleneck is the fact that device sizing is 

normally done by hand. This process is tedious and time consuming. If device sizing 

could be automated, this would decrease the time to market. Automated device sizing 

may also lead to improved performance, reduced die size, and lower costs. 

    

Although many attempts have been made to automate the process of device sizing, no 

solution has yet been widely accepted by industry. On the contrary: when experienced 

analog designers evaluate the algorithms offered by leading CAD vendors, they often 

discover basic design errors such as transistors not being biased in the saturation region.    

 

The strategic goal of this project was to design and implement an algorithm to automate 

device sizing during analog design for CMOS operational amplifiers (op-amps).  The 

organization of this report is as follows.  The first section is a review of prior work in 

automated device sizing for analog circuits.  The second section discusses the approach 

and implementation aspects of this work.  The third section presents the results of this 

work.  The fourth section suggests further work that could be done in this area.  The 

fifth section presents the conclusions of the project.  The remainder of the report 

contains acknowledgments, references, and appendixes.  

 

■Review of Prior Work 
 

There has been a surge of interest in automated analog design during the past few years 

[1].  A variety of different approaches can be found in literature [2-4].  The different 

approaches can be categorized into three categories: 1) Layout-based, 2) Knowledge-

based, and 3) Optimization-based [1].   

 

The layout approach is similar to digital synthesis in that it assembles predefined 

layouts.  This method does not provide enough flexibility to be usable in industry [1].   

 

Knowledge-based methods model the techniques of analog designers.  Although this 

method is very fast, setting up the problem is very time consuming and requires an 

experienced analog circuit designer.   

 

Optimization based methods take a “black box” approach to the problem. An objective 

function is defined, and independent variables are adjusted to maximize or minimize 

the objective function. Optimization-based methods can be divided into two sub-

categories: a) circuit simulation based optimization and b) analytical equation based 

optimization [1].  The simulation based method uses a circuit simulator such as SPICE 
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within the optimization loop to determine circuit performance.  The results are very 

accurate but the approach tends to be slow.  The use of simplified analytical equation 

based models trades off a loss of accuracy for an improvement in speed.               

 

■This Work 
 

● General Approach  
 

The algorithm that is developed and implemented in this work is knowledge-based 

and uses analytical equations to describe device behavior. It is modeled after the way 

seasoned analog circuit designers design circuits.  The flow chart below depicts how 

circuits are typically designed: 

 

 
 

This is an iterative process that involves hand calculations, SPICE circuit simulations, 

and the assessment of solutions.  The most challenging part is performing the hand 

calculations.  Another challenging part is evaluating the trade-offs between different 

specifications.  Since optimization software is used in this work, the balance between 

the different specifications must be defined a priori. It is then taken care of within the 

software.  Another challenging part of analog design is accounting for phenomena 

that SPICE does not model.  For example SPICE does not in its native form model 

device mismatch and it also does not model kT/C noise in switched capacitor circuits.  

This work does not consider phenomena that are not modeled in SPICE. 
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A high level flow chart of the algorithm used in this work is shown below: 

 

     
 

The key difference is that the hand calculations are replaced with numerical 

optimization software.  In order to make this replacement the equations for the 

performance have to be input into the software.  Since hand calculations are part of 

the design process this does not represent additional work for the designer.  In fact it 

saves time since the designer does not have to make approximations and then verify 

that the approximations are valid.  When circuits are designed the equations must be 

greatly simplified to be useful to the designer.  Making these approximations is a 

tedious job and typically costs ~20% accuracy when compared to detailed SPICE 

models.  Since all the calculations are performed by software this eliminates the 

approximation errors.   

 

There is typically a wide range of device sizes that will meet a given specification.  

The use of numerical optimization software allows the computer to account for all the 

trade-offs to determine a better solution than a designer is likely to achieve using 

intuition to guess where the optimal solution is.  Typically in industry the designer 

will stop once a solution that meets all specifications is identified.  This is mainly 

because of time pressures as companies are trying to beat their competitors into the 

market. A secondary reason is that because of the non-linear relationships and 

competing objective functions it is a very difficult process to solve for a more optimal 

solution. 

 

In order to manufacture a circuit the layout must be on grid.  For this work the grid is 

ignored.  Others have solved this problem by either snapping to a grid after the 

optimization is complete or by programming the problem as an integer problem 

where the integer is set by the grid spacing.   

 

●Implementation 
 

The project was implemented in three phases of escalating complexity.  The first 

phase focuses on an NMOS common source amplifier with a PMOS active load.  For 

SPICE circuit simulations a level 1 model is used.  This allows the optimization 

software to use the same equations as the SPICE circuit simulator. 
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The second phase is the same common source amplifier, but using a BSIM3 SPICE 

model.  First order hand calculations are used.  To fit the first order equations to the 

SPICE circuit simulations a technique termed ‘making coefficients of equations’ is 

used.  This is discussed further later. 

 

Phase 3 is a two-stage operational-amplifier with a BSIM3 SPICE model.  The first 

stage is an NMOS differential amplifier and the second stage is a PMOS common 

source amplifier.   

 

All the software was selected so the project could be completed on a PC platform.  

The top level programming language is Matlab [5].  Mathematica [6] is used to derive 

equations and for small signal analysis.  All SPICE simulations are run with 

TopSPICE [7].  The optimization part is written in AMPL [8] which is a high level 

optimization modeling language.  AMPL requires a solver for the optimization 

problem.  The decision to use AMPL was made so that different solvers could be used 

without reformulating the optimization problem.     

 

For this project multiple nonlinear AMPL solvers are used.  The problem was 

formatted in its native form meaning that the width and length of the transistors are in 

units of microns.  Due to this poor scaling the optimization solvers sometimes give 

solutions that do not meet the constraints.  To avoid this problem the solutions are 

verified against the constraints and solutions that do not meet the constraints are 

rejected.   The first solver is DONLP2 [9] which uses a variant of the SQP-method 

(sequential quadratic programming).  The second solver is MINOS [10] which uses a 

projected Lagrangian approach.  The third solver is Knitro [11] which allows the user 

to select between the interior point method and the active set algorithm.  The fourth 

solver is SNOPT [12] which uses the SQP method.  The fifth solver is LOQO [13] 

which uses an infeasible primal-dual interior-point method.  The sixth solver is 

IPOPT [14] which uses the interior point method.           

 

One important specification of a circuit is that its DC voltages are in a range where all 

MOSFET’s remain in saturation.  For this project a technique is used where the bias 

voltages and lengths are fixed and the widths are varied to give the desired DC 

voltages.  For this paper this method is called ‘adjust widths for DC’.  More 

information can be found in appendix B. 

 

In order to make the project independent of the SPICE model, first order model 

equations are used and the coefficients are extracted from the SPICE simulations.  

The following describes how the coefficients of equations are extracted for the drain 

current. 

 

First Order Drain Current Equation: 
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Coefficient Equation for Drain Current: 
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To calculate the <Current Factor> a SPICE simulation is run and the SPICE data is 

plugged into the equation.  Since this is only an approximation the coefficients are 

recalculated when a transistor size or bias voltage changes. 

 

The remaining equations and their associated coefficients of equations are defined 

Appendix A. 

 

The TSMC 0.35µ BSIM3 SPICE models were used during phase 2 and phase 3.  

These models are “binned”, which means the model is different for different device 

sizes.  The software automatically takes care of the binning by changing the model 

that each transistor calls. 

 

The following diagram shows the optimization procedure under typical conditions:  

 

 
 

The first step is to set the internal specification to the user defined specification.  This 

is done to account for the approximations used.  For example if the specification for 

DC gain is 50 V/V and when the optimization is complete the DC gain is 45 V/V then 

the internal gain is increased for the next iteration.  The loop is repeated until either 

all the specs are met or the max iteration count is reached.  The next step is to adjust 

the widths for DC.  This makes sure all the transistors are at their desired DC values 

for the next steps.  Then the coefficients of equations are calculated.  This fits the 

more complex MOSFET equations to the level 1 equations.  Now the numerical 

optimization problem is formulated and executed with AMPL.  Multiple solvers for 

AMPL are run and the optimal solution that meets the constraints is taken.  Next 

SPICE is run with the values returned from the optimization software.  If the circuit 

does not meet the DC performance spec then the widths are adjusted for DC.  Now 
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the AC specs are checked.  If the specifications are met then the loop is exited.  If the 

AC specifications are not meet then the internal specifications are adjusted and the 

loop is repeated as long as the max iteration count is not reached.      

 

The following diagram shows the complete algorithm: 

 

 
 

As is done in industry, the circuit is designed for typical conditions, then the bias 

circuit is designed, and then the circuit is simulated over process, temperature range, 

and power supply variations.  If any of the corner simulations fail then the worst 

failure case is used to adjust the internal spec for the next iteration.  A maximum 

number of iterations is always specified so that the process does not repeat forever.  

To design the bias circuit the user specifies the device size of the bias network as a 

function of the other device sizes in the circuit.  For example, with a simple current 

mirror the user would tell the program to make the current mirror transistor the same 

size as the load transistor in the amplifier.  The program then sweeps the DC 

reference current until the desired output voltage is reached.   

 

■Results 
 

●Common Source Amplifier with Level 1 SPICE Model 

 
The common source amplifier is optimized with the constraints unity gain frequency, 

DC gain, and input referred thermal noise.  Below are the equations for these 3 

constraints. 

 

Unity gain frequency for a common source amp being driven at the gate of the 

NMOS in Hertz: 
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Input referred thermal noise: 
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Where: 

 nCgdOvlCf ,=  

 pCgdOvlpCdbnCdbCloadCo ,,, +++=  

 pGdsnGdsGdo ,, +=  

 Gm,n is NMOS transconductance 

 Gm,p is PMOS transconductance 

 Gds,n is NMOS output conductance 

 Gds,p is PMOS output conductance 

 CgdOvl,n is the NMOS gate to drain overlap capacitance 

 CgdOvl,p is the PMOS gate to drain overlap capacitance 

Cdb,n is the NMOS drain to bulk capacitance 

 Cdb,p is the PMOS drain to bulk capacitance 

 Cload is the load capacitance 

 

For the common source amplifier the original spec is DC gain and the goal of the 

program is to minimize gate area.  One unexpected feature is that if the input DC 

voltage of the NMOS transistor is fixed and the output voltage is fixed then the DC 

gain is fixed.  This is not the case when a higher order MOSFET is used in SPICE.  

Next bandwidth and thermal noise are added.  The program performed as expected 

with these constraints.  When the program is given specifications that are easy to 

meet (e.g. low bandwidth and high thermal noise) then the software returns the 

minimum size devices as expected.  As the specifications are made more difficult to 

achieve (increased bandwidth and decreased noise) the device sizes increase in an 

anticipated fashion.    

 

At this point in the project the only optimization solver used is DONLP2.  Most of the 

subsequent problems that were encountered were traced to DONLP2.  The first major 

problem is that if DONLP2 is given a specification that cannot be meet then it will 

put a high value in a variable it calls infeasibility but will return a set of lengths and 

widths as if it were able to solve the problem.  Once this problem was discovered it 

was simple to account for, but understanding the problem took a great amount of 

time.  The second major problem was that DONLP2 was not returning the expected 

values.  The first time this was encountered the issue turned out to be that the default 

resolution in DONLP2 was too large for the application.  Once the tolerance was 

adjusted the software performed as expected.  The second time the problem of 

DONLP2 returning an unexpected value, it turned out to be that DONLP2 was getting 

stuck in a local minimum instead of finding the global minimum.  This is a limit of 

the optimization software that can only be corrected by switching to a program that 

has global convergence.      
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Results of a test case with the following constraints will be presented.  The goal of the 

test case is to minimize device area from different initial conditions, subject to (s.t.) 

the following conditions: 

 

Hzfts u 1.. ≥  

VVts InputNoise 1.. , ≤  

MpVthVpbiasVts DCOut +≤,..  

MpIdMnIdts =..  

µ5.. ≥Wpts  

µ5.. ≥Lpts  

µ5.. ≥Wnts  

µ5.. ≥Lnts  

 

Where: 

MpVth = PMOS threshold voltage 

MnId = NMOS drain current 

MpId = PMOS drain current 

 

The following tables show the results that were obtained:   

 

Start End Start End Start End

Wp 5u 5u 5u 5u 5u 5u

Lp 5u 5u 5u 5u 5u 5u

Wn 5u 5u 5u 5u 5u 5u

Ln 5u 5u 5u 5u 5u 5u

Vpbias 3 2.00614 4 2.00617 2 2.00617

Case 1.1 Case 1.2 Case 1.3

 
 

Start End Start End Start End

Wp 100u 5u 100u 5u 50u 5u

Lp 10u 5u 10u 5u 30u 5u

Wn 100u 5u 100u 5u 50u 5u

Ln 10u 5u 10u 5u 30u 5u

Vpbias 3 2.00612 2 2.00614 3 2.00617

Case 1.4 Case 1.5 Case 1.6

 
 

Start End Start End Start End

Wp 50u 5u 10u 5u 10u 5u

Lp 30u 5u 8u 5u 8u 5u

Wn 50u 5u 50u 5u 50u 5u

Ln 30u 5u 30u 5u 30u 5u

Vpbias 2 2.00612 3 2.00613 2 2.00612

Case 1.7 Case 1.8 Case 1.9
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Start End Start End Start End

Wp 10u 5u 10u 5u 10u 5.01408u

Lp 8u 5u 8u 5u 8u 7.10616u

Wn 50u 5u 50u 5u 50u 5u

Ln 30u 5u 30u 5u 30u 5u

Vpbias 2.5 2.00615 4 2.00616 1.5 1.5999

Case 1.10 Case 1.11 Case 1.12

 
 

Note that all cases except Case 12 found the minimal device sizes, which is what is 

expected.  For case 12 the PMOS transistor starts in the triode region and finishes on 

the boundary between saturation and triode.  Since the equations assume saturation, 

the minimal device sizes are not found.  Since the power supply is 5 volts  the choice 

of Vpbias = 1.5 volt is a very poor starting point.   

 

●Common Source Amplifier with BSIM3 SPICE Model 
 

The second phase of the project treated the common source amplifier with a BSIM3 

SPICE model.  There are issues running TopSPICE with the TSMC 0.35µ models.  

Since Northern Arizona University has a non-disclosure agreement concerning the 

TSMC models the author was not able to send TopSPICE a test case to solve this 

problem.  The decision was therefore made not to vary the models in this project.  

The code is written so that the models can be varied but the models are always set to 

typical models.  Temperature also causes problems with TopSPICE and the TSMC 

0.35µ models.  The TSMC models are written for HSPICE and TopSPICE claims to 

be compatible with HSPICE.  However TopSPICE does not implement some of the 

HSPICE temperature model cards.  This was found to cause some very strange results 

over temperature.  The decision was therefore made not to vary temperature in the 

project.  As a result, the corner simulations consist of only varying the power supply. 

 

For the bias circuit it was originally planned that the input bias current would be 

specified and the program would adjust the bias transistor to get the correct bias 

voltage.  Since the program is optimizing gate area the circuits have large Vgs values.  

In order to get a large Vgs from a diode connected transistor the width has to be 

small.  In practice it was found that the widths would have to be smaller than the 

minimum allowed width.  Due to transistor sizes leaving their allowable range the 

design bias network method was changed.  Since typically in industry the circuit 

designer is given the bias current as a specification this project fails to develop a 

practical bias circuit.  But since designing the bias network is a small part of 

designing an op-amp the program can be used to design everything except the bias 

network in practical applications.   

 

The following shows the results for the common source amplifier with a BSIM3 

SPICE model.  The left column shows the optimization variables, AC constraints, DC 

node voltage constraints, and run time.  There are DC constraints on Vpbias to keep 

the PMOS in saturation.  Each test case is labeled with Case X and shows the start 

and end values for the optimization variables and constraints mentioned above.   
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The following shows constraints that are not shown in tables:  

MpVthVpbiasVts DCOut +≤,..  

MpVthVpbiasVddts ≥−..  

MpIdMnIdts =..  

µ4.0.. ≥MpWts  

µ35.0.. ≥MpLts  

µ4.0.. ≥MnWts  

µ35.0.. ≥MnLts  

 

Where 

MpVth = PMOS threshold voltage 

MnId = NMOS drain current 

MpId = PMOS drain current 

MpW = width of PMOS Mp 

MpL = length of PMOS Mp 

MnW = width of NMOS Mn 

MnL = length of NMOS Mn 

Vpbias = bias voltage for PMOS Mp 

Vdd = power supply = 3.3 volts 

 

Cases 1 through 18 are for constraints that are very easy to satisfy.  They test the 

ability of the algorithm to converge from different initial points.  Cases 19 through 26 

reveals how the optimized designs behave when the constraints are made more 

difficult to meet. 

 

Start End Start End Start End

MpW 0.4u 0.401049u 0.4u 0.40292u 0.4u 0.400388u

MpL 0.35u 0.35u 0.35u 0.35u 0.35u 0.35u

MnW 0.4u 0.4u 0.4u 0.4u 0.4u 0.4u

MnL 0.35u 0.35u 0.35u 0.35u 0.35u 0.35u

Vpbias 1.5694 1.571 2.3 1.573 2 1.57

DcGain >= 1 20.1043 20.1216  79.3099m 20.1122  429.458m 20.1108

unityGain >= 1  13.8855M 13.8831M 0 13.8842M 0 13.8845M

thermalNoise <= 1  13.366n 13.3706n  73.8005n 13.3747n  29.046n 13.3677n

Vdc_out = 1.65 +/- 5m 1.64988 1.64652 0.034707 1.648 0.132794 1.64857

Run Time

Case 2.1 Case 2.2 Case 2.3

15.4233 min 8.36568 min 14.4713 min

 

The PMOS width is not the minimum width of 0.4µ as would be expected with 

constraints that are easy to satisfy (small DC gain, small unity gain frequency, and 

large thermal noise).  This is because of the first order DC bias models.  The 

optimization software returns a width of 0.4µ but because it does not meet the DC 

constraints, the program tweaks in the width of the PMOS transistor to get the desired 

DC voltage. 
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Start End Start End Start End

MpW 0.4u 0.4u 10u 0.403741u 10u 0.403741u

MpL 0.35u 0.35u 5u 0.35u 5u 0.35u

MnW 0.4u 0.4u 10u 0.4u 10u 0.4u

MnL 0.35u 0.35u 5u 0.35u 5u 0.35u

Vpbias 1.5 1.569 1.4 1.574 2.3 1.574

DcGain >= 1 14.4128 20.0842 1.88677 20.114  64.0863m 20.114

unityGain >= 1  14.1749M 13.8878M  20.6734M 13.8838M 0 13.8838M

thermalNoise <= 1  13.0536n 13.364n  9.1928n 13.3772n  65.2011n 13.3772n

Vdc_out = 1.65 +/- 5m 2.16583 1.65342 2.91497 1.64753 0.028661 1.64753

Run Time

Case 2.4 Case 2.5 Case 2.6

14.5413 min 12.3918 min 10.6275 min

 

Start End Start End Start End

MpW 10u 0.403741u 10u 0.403741u 10u 0.40292u

MpL 5u 0.35u 5u 0.35u 5u 0.35u

MnW 10u 0.4u 10u 0.4u 1u 0.4u

MnL 5u 0.35u 5u 0.35u 5u 0.35u

Vpbias 2 1.574 1.5 1.574 1.4 1.573

DcGain >= 1  391.273m 20.114 2.32032 20.114  110.48m 20.1122

unityGain >= 1 0 13.8838M  21.9865M 13.8838M 0 13.8842M

thermalNoise <= 1  23.0611n 13.3772n  9.34513n 13.3772n  30.8094n 13.3747n

Vdc_out = 1.65 +/- 5m 0.13062 1.64753 2.86465 1.64753 3.27142 1.648

Run Time

Case 2.7 Case 2.8 Case 2.9

9.59413 min 12.1538 min 8.34668 min

 

Start End Start End Start End

MpW 10u 0.400388u 10u 0.403741u 10u 0.40292u

MpL 5u 0.35u 5u 0.35u 5u 0.35u

MnW 1u 0.4u 1u 0.4u 1u 0.4u

MnL 5u 0.35u 5u 0.35u 5u 0.35u

Vpbias 2.3 1.57 2 1.574 1.5 1.573

DcGain >= 1  953.214m 20.1108  226.154m 20.114  119.464m 20.1122

unityGain >= 1 0 13.8845M 0 13.8838M 0 13.8842M

thermalNoise <= 1  43.0872n 13.3677n  34.1892n 13.3772n  31.1062n 13.3747n

Vdc_out = 1.65 +/- 5m 3.14578 1.64857 3.24389 1.64753 3.26916 1.648

Run Time

Case 2.10 Case 2.11 Case 2.12

14.5506 min 9.09157 min 9.56558 min
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Start End Start End Start End

MpW 100u 0.403741u 100u 0.403741u 100u 0.403741u

MpL 5u 0.35u 5u 0.35u 5u 0.35u

MnW 100u 0.4u 100u 0.4u 100u 0.4u

MnL 5u 0.35u 5u 0.35u 5u 0.35u

Vpbias 1.4 1.574 2 1.574 1.5 1.574

DcGain >= 1 1.84893 20.114  421.762m 20.114 2.26213 20.114

unityGain >= 1  169.735M 13.8838M 0 13.8838M  181.205M 13.8838M

thermalNoise <= 1  2.90312n 13.3772n  7.07296n 13.3772n  2.94974n 13.3772n

Vdc_out = 1.65 +/- 5m 2.92177 1.64753 0.13834 1.64753 2.87298 1.64753

Run Time

Case 2.13 Case 2.14 Case 2.15

12.1428 min 9.37948 min 12.4422 min

 

Start End Start End Start End

MpW 1u 0.403741u 1u 0.403741u 1u 0.403741u

MpL 5u 0.35u 5u 0.35u 5u 0.35u

MnW 10u 0.4u 10u 0.4u 10u 0.4u

MnL 5u 0.35u 5u 0.35u 5u 0.35u

Vpbias 1.4 1.574 2.3 1.574 2 1.574

DcGain >= 1  76.1636m 20.114  3.53582m 20.114  17.0158m 20.114

unityGain >= 1 0 13.8838M 0 13.8838M 0 13.8838M

thermalNoise <= 1  39.1671n 13.3772n  286.312n 13.3772n  99.6606n 13.3772n

Vdc_out = 1.65 +/- 5m 0.033637 1.64753 0.001687 1.64753 0.008 1.64753

Run Time

Case 2.16 Case 2.17 Case 2.18

12.4297 min 11.0547 min 9.69527 min

 

Start End Start End

MpW 0.4u 0.4u MpW 0.4u 0.4u

MpL 0.35u 1.09785u MpL 0.35u 0.871419u

MnW 0.4u 0.4u MnW 0.4u 0.4u

MnL 0.35u 0.794829u MnL 0.35u 0.658168u

Vpbias 1.5694 1.41 Vpbias 1.5694 1.428

DcGain >= 50 20.1043 51.7458 DcGain >= 40 20.1043 42.1438

unityGain >= 1  13.8855M 6.08698M unityGain >= 1  13.8855M 7.38023M

thermalNoise <= 1  13.366n 20.1831n thermalNoise <= 1  13.366n 18.3467n

Vdc_out = 1.65 +/- 5m 1.64988 1.65066 Vdc_out = 1.65 +/- 5m 1.64988 1.6513

Run Time Run Time

Case 2.19 Case 2.20

13.0606 min 12.8914 min

 

As expected, when the DC gain constraint is increased the length increases while the 

width stays at minimum geometry. 
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Start End Start End

MpW 0.4u 0.4u MpW 0.4u 0.426358u

MpL 0.35u 0.624045u MpL 0.35u 0.35u

MnW 0.4u 0.4u MnW 0.4u 1.26543u

MnL 0.35u 0.527732u MnL 0.35u 0.35u

Vpbias 1.5694 1.49 Vpbias 1.5694 0.9413

DcGain >= 30 20.1043 31.9443 DcGain >= 1 20.1043 16.5384

unityGain >= 1  13.8855M 9.24083M unityGain >= 30M  13.8855M 30.0289M

thermalNoise <= 1  13.366n 16.4646n thermalNoise <= 1  13.366n 8.45258n

Vdc_out = 1.65 +/- 5m 1.64988 1.64997 Vdc_out = 1.65 +/- 5m 1.64988 1.64912

Run Time Run Time

Case 2.21 Case 2.22

18.4432 min 52.3952 min

 

When only bandwidth is increased, the width increases and the length stays at 

minimum geometry.  Also the Vpbias drops which means there is a larger Vgs for the 

PMOS transistor as would be expected for increased bandwidth. 

 

Start End Start End

MpW 0.4u 0.819927u MpW 0.4u 1.73129u

MpL 0.35u 0.35u MpL 0.35u 0.35u

MnW 0.4u 2.01771u MnW 0.4u 3.92324u

MnL 0.35u 0.35u MnL 0.35u 0.35u

Vpbias 1.5694 0.9363 Vpbias 1.5694 0.9569

DcGain >= 1 20.1043 16.116 DcGain >= 1 20.1043 17.5687

unityGain >= 50M  13.8855M 50.0026M unityGain >= 100M  13.8855M 100.002M

thermalNoise <= 1  13.366n 6.54209n thermalNoise <= 1  13.366n 4.63318n

Vdc_out = 1.65 +/- 5m 1.64988 1.64933 Vdc_out = 1.65 +/- 5m 1.64988 1.6477

Run Time Run Time

Case 2.23 Case 2.24

21.4201 min 17.8939 min

 

Start End Start End

MpW 0.4u 3.20814u MpW 0.4u 6.73432u

MpL 0.35u 0.35u MpL 0.35u 2.59961u

MnW 0.4u 5.07527u MnW 0.4u 9.03107u

MnL 0.35u 0.35u MnL 0.35u 0.959205u

Vpbias 1.5694 1.353 Vpbias 1.5694 0.9009

DcGain >= 1 20.1043 19.0941 DcGain >= 50 20.1043 52.1522

unityGain >= 1  13.8855M 129.938M unityGain >= 100M  13.8855M 101.553M

thermalNoise <= 5n  13.366n 4.22208n thermalNoise <= 5n  13.366n 4.55812n

Vdc_out = 1.65 +/- 5m 1.64988 1.65154 Vdc_out = 1.65 +/- 5m 1.64988 1.64632

Run Time Run Time

Case 2.25 Case 2.26

2.64097 min 29.0641 min
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For case 25 where the thermal noise constraint is decreased, the width increases and 

the length stays at minimum geometry as expected.  For case 26 the DC gain 

requirement is increased, the bandwidth is increased and the thermal noise is 

decreased.  As is expected for increased DC gain the lengths increase beyond 

minimum geometry.  For increased bandwidth and decreased noise the widths 

increase beyond minimum geometry.    

 

 ●A Two Stage Op-Amp 
 

The third phase of the project is the optimization of a two stage op-amp.  The first 

stage is an NMOS differential amplifier and the second stage is a PMOS common 

source amplifier.   

 

At the start of this project it was assumed that Mathematica could be used to solve for 

the exact small signal equations.  The method used for this project was to write the 

node equations from the small signal model and use Mathematica to solve theses 

equations for the exact transfer function.  For the common source amplifier 

Mathematica was able to solve the equations in a very short time.  But for the two 

stage op-amp Mathematica was not able to solve the node equations in a reasonable 

about of time.  To aid in the understanding of the problem, a discussion of the method 

to solve for the unity gain frequency follows.      

 

The transfer function as a function of frequency (f) can be written as: 

 

Part][Imagj Part Real)( +=ftransfer  

 

The magnitude is:  
22 )()( PartImagPartRealMag +=  

   

The phase is: 









= −

PartReal

PartImag
tan 1φ  

 

To solve for the unity gain frequency set: 

1=Mag  

 

To calculate the unity gain frequency, solve for the frequency where the above 

relationship is met. 

 

The most challenging part of this is breaking the transfer function into the real and 

imaginary part.  Using the Mathematica function ComplexExpand the program ran 

for over five days without finding a solution.  Also a custom function to do this was 

written but it ran out of computer memory.  It was suggested that the program be ran 

on a UNIX platform instead of a PC platform.  Some users have found Mathematica 

to perform better on a UNIX workstation than a PC.  But due to not having access to 
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a UNIX version of Mathematica this was not tried.  This point is as far as the 

implementation and testing proceeded. 

 

■Further Work 
 

As a result of the experience gained during implementation and testing, several 

improvements have been identified for future versions of the software.  An important 

improvement would be to scale the problem so all the variables are on the order of 1 

before sending the problem to the optimization software.  For this project the variables 

were left in their native form and the optimization software was allowed to scale the 

problem.  Most of the internal scaling algorithms are developed for large numbers and 

do not perform well with very small numbers (i.e. for numbers in the µ and n range).  

For op-amps formatted in their native form, there are noise levels in the nV range, 

transistor sizes in the µm range, bias voltages of a few volts range, DC gains in the 

range of 3k to 10k V/V, and bandwidths in the MHz range.  This is a huge range of 

numbers that causes problems if not scaled properly.  For this project the scaling 

problem was worked around by using multiple solvers and rejecting solutions that 

failed to meet the constraints.  Ideally the problem should be scaled before sending it to 

the optimization solver and then scaled back after the optimization is complete.  

 

The second area for improvement is to implement the BSIM3 DC model instead of 

using the level 1 model.  This would minimize the change that the adjust widths for DC 

function has to make.  But as seen in the “Common Source Amplifier with BSIM3 

SPICE Model” section in cases 1 through 18, the optimal width is 0.4µ and the largest 

width returned is 0.403741µ.  This suggests that implementing the BSIM3 model would 

be a great amount of work for a small return.         

 

Finally, as noted in the op-amp section, Mathematica was unable to solve the op-amp 

equations in a reasonable amount of time.  The first step would be to use Mathematica 

on a computer platform like UNIX which is known for better memory management 

than Windows.  Another approach would be to custom write functions to do this.  Also 

there are add on packages for Mathematica that may have better performance [16].  The 

final approach would be to make approximations.  Since the small signal parameters 

and DC model already use first order approximations, these additional approximations 

may not contribute an unacceptable error.    

 

■Conclusion 
 

This report has described the design and implementation of an algorithm to automate 

the device sizing in CMOS Op-Amps.  As can be seen through the common source 

amplifier with level 1 SPICE models and the common source amplifier with BSIM3 

SPICE models, the basic algorithm works well.  The primary shortcoming of this 

method is that the exact equations for a two stage op-amp could not be solved in a 

reasonable amount of time.  This is an issue that can be addressed in future work.     
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■Appendix A – Coefficients of Equations 
 

Below are the first order equations for MOSFETs that are used in this work and the 

equivalent coefficient of equation.   

 

First Order Drain Current Equation: 

)1()(
22

2
VdsVtVgs

LdL

WCox
Id λ

µ
+−

−
=  

 

Coefficient Equation for Drain Current: 









−

−
= 2)(
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* VtVgs

LdL
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FactorCurrentId  

 

First Order Gm Equation:   
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LdL
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Coxgm
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Coefficient Equation for Gm: 
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First Order Gds Equation 

Id

LVe
gds =  

 

Coefficient Equation for Gds: 









=

Id

L
FactorGdsgds *  

 

First Order Cbd Equation 

CdboWCbd *=  

 

Coefficient Equation for Cbd: 

WFactorCdbCbd *=  

 

First Order Cbs Equation 

CdsoWCbs *=  

 

Coefficient Equation for Cbs: 

WFactorCdsCbs *=  

 

First Order Cgd overlap Equation 

ovCgdWovCgd ,*, =  
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Coefficient Equation for Cgd overlap: 

WFactorovCgdovCgd *,, =  

 

First Order Cgs overlap Equation 

ovCgsWovCgs ,*, =  

 

Coefficient Equation for Cgs overlap: 

WFactorovCgsovCgs *,, =  

 

First Order Cgd Equation 

CgdLovWCgd **=  

 

Coefficient Equation for Cgd: 

WFactorCgdCgd *=  
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■Appendix B – Adjust Widths for DC 
 

Adjusting widths for DC is a technique where the bias voltages and lengths are fixed 

and the widths are varied to give the desired DC voltages.  This guarantees that the 

transistors are biased correctly.  

 

To illustrate the adjust widths for DC technique an example is worked.  To start with 

select vdd = 3.3 volt, Vnbias = 1 volt, Vpbias = 2.3 volt, Wn = 5µm, Ln = 1µm, Wp = 

15µm, and Lp = 1 µm.   

 

 
 

From SPICE simulation Vout,dc = 54.6mV. 

 

Next a DC Voltage source is placed in the circuit to drive the output to the desired 

DC voltage.  For this example select Vdc,out = 1.65 volt. 
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From SPICE Simulations Id,NMOS = 87.6µ amp and Id,PMOS = 21.5µ amp.  To 

adjust for the desired output voltage the following relationship is used. 

 

NewCurrent

NewWidth

OrginalCurrent

OrginalWidth
=  

 

Adjust the PMOS to have the same current as the NMOS therefore 

um
u

uu
Wp 61

5.21

6.87*15
==  

 

When SPICE is re-run without the voltage source at the output and with the new Wp 

the output voltage is 2 Volt.  This is more than the desired output voltage of 1.65 volt 

but the process can be repeated till the desired accuracy is obtained. 
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■Appendix C – Software Interface 
 

The final version of the software is written in an object oriented style.  The top object 

is a netlist object that contains all the SPICE objects, DC constraints objects, 

optimization constraints objects, corner simulations objects, and bias circuit objects. 

 

The following describes the Matlab function calls to run the CS Amp with a current 

mirror load.  Like SPICE this program supports unit postfix i.e. u = 10^-6.  The 

Matlab command is between the <>.   

 

<netlist = add_tsmc35_process(0);> 

 

This returns a netlist object with the first object being a process object.  The TSMC 

35 process object contains model paths, minimum and maximum geometry size, and 

the different bins.  Also contained is the TopSPICE install directory, and TopSPICE 

options.  The paths in this object have to be changed to work on another computer.  

The last parameter is a debug parameter.  If set to 1 the function prints out what is 

happening else it prints nothing.   

 

<netlist = add_netlist_element(netlist, 'Mn out nbias 0 0 nmos w=0.4u l=0.35u 

optimizeWidth=true optimizeLength=true', 0);> 

 

This adds a MOSFET object to the netlist object.  The format is the standard SPICE 

except for the  optimizeWidth and optimizeLength parameters.  These parameters tell 

the program it can optimize the length and width.  In case these values aren't specified 

then the default value is true.  The last parameter is for debugging,  1 = debug mode 

and 0 = production mode.  

  

<netlist = add_netlist_element(netlist, 'Mp out pbias rail rail pmos w=0.4u l=0.35u 

optimizeWidth=true optimizeLength=true', 0);> 

 

This adds another MOSFET object to the netlist object.  See above for more details. 

 

<netlist = add_netlist_element(netlist, 'Vpbias pbias 0 DC 1.57871 

optimizeVoltage=true', 0);> 

 

This adds a voltage source object to the netlist object.  This follows the standard 

SPICE format except for the optimizeVoltage parameter which tells the software to 

optimize the voltage.  The default value is true.  The last parameter is for debugging.  

 

<netlist = add_netlist_element(netlist, 'Vdd rail 0 DC 3.3 optimizeVoltage=false', 

0);> 

 

This adds the power supply to the netlist object.  Since the power supply is set by the 

system the software does not optimize the power supply. 
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<netlist = add_netlist_element(netlist, 'Vnbias nbias 0 DC 1 optimizeVoltage=false', 

0);> 

 

This adds the input voltage source to the netlist object.  Since the input voltage is set 

from the driving circuit, the voltage is not optimized. 

 

<netlist = add_netlist_element(netlist, 'c1oad out 0 1p optimizeCap=false', 0);> 

 

This adds a capacitor object to the netlist object.  This follows the standard SPICE 

format except for the optimizeCap parameter which tells the software to optimize the 

capacitance value.  The default value is true.  The last parameter is for debugging.  

Since the load capacitance is set by what the circuit is driving it is not optimized.  

 

<netlist = add_netlist_element(netlist, '.op', 0);> 

 

This adds an op point object to the netlist object.  This follows the standard SPICE 

format.  The last parameter is for debugging.   

 

<netlist = add_dc_constraint_object(netlist, 'out=1.65 vary=Mp dontVary=Mn', 0);> 

 

This adds a dc constraint object to the netlist object.  The voltage at node "out" is set 

to 1.65 volts by adjusting the width of transistor Mp and making the current equal to 

the current in transistor Mn.  The section on Adjust Widths for DC explains the 

method used. 

 

<netlist = add_dc_constraint_object(netlist, 'VoltageTolerance=5m', 0);> 

 

This is the tolerance for the DC output voltage.   

 

<netlist = add_dc_constraint_object(netlist, 'MaxIterations=10', 0);> 

 

This is how many times the program will try to solve for the DC voltage that is within 

the voltage tolerance.  For the TSMC process it would typically take between 3 and 4 

iterations to get the output voltage within 5mV.  

 

<netlist = add_opt_object(netlist, 'installDir=xx, 0);> 

 

This is where the optimization software is installed.  The <xx> represents the install 

path.  The last parameter is for debugging. 

 

<netlist = add_opt_object(netlist, 'resultsDir=xx', 0);> 

 

This is where the optimization results are stored.  The <xx> represents the directory 

to store the results.  The last parameter is for debugging. 

 

<netlist = add_opt_object(netlist, 'optFileName=OptFile', 0);> 
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This sets the name for the input file for the AMPL optimization software.  The last 

parameter is for debugging. 

 

<netlist = add_opt_object(netlist, 'logFile=AmplLog.txt', 0);> 

 

This sets the name for the output file for the AMPL optimization software.  The last 

parameter is for debugging. 

 

<netlist = add_opt_object(netlist, 'maxIteration=10', 0);> 

 

This sets in maximum number of iterations the software will try to optimizing the 

circuit.  The last parameter is for debugging. 

 

<netlist = add_opt_object(netlist, 'equalityTolerance=1n', 0);> 

 

Because of numerical precision there could be an numerical error in the equality 

constraints.  If an equality constraint is within the equalityTolerance value then they 

are considered to be equal.  The last parameter is for debugging. 

 

<netlist = add_opt_object(netlist, 'option=solver donlp2', 0);> 

 

This sets the AMPL solver to Donlp2.  The code is written so that different solvers 

can be used.  The last parameter is for debugging. 

 

<netlist = add_opt_object(netlist, 'option=donlp2_options "silent=1 epsx=1e-007"', 

0);> 

 

This sets options for Donlp2 solver.  By setting the variable silent=1 this limits the 

amount of output produced by Donlp2.  The variable epsx is the error tolerance.  The 

last parameter is for debugging. 

 

<netlist = add_opt_object(netlist, 'minimize area: MnW*MnL+MpW*MpL', 0);> 

 

This is the objective function for the optimization.  Here gate area is minimized.   The 

last parameter is for debugging. 

 

<netlist = add_opt_object(netlist, 'param MaxThermalNoise=10n', 0);> 

 

This is a parameter for optimization.  Here the MaxThermalNoise is set to 10nV.  All 

the coefficients of equations are added as param automatically.  See the section on 

Making Coefficients of Equations for more information.  The last parameter is for 

debugging. 

 

<netlist = add_opt_object(netlist, 'param MinUnityGainFreq=80M', 0);> 

 

This is a parameter for optimization.  Here the MinUnityGainFreq is set to 80MHz.  

The last parameter is for debugging. 
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<netlist = add_opt_object(netlist, 'param MinDcGain=100', 0);> 

 

This is a parameter for optimization.  Here the MinDcGain is set to 100 V/V.  The 

last parameter is for debugging. 

 

<netlist = add_opt_object(netlist, 'varA MnId=MnCurFac*(MnW/(MnL-

2*LdNmos))*(Vnbias-MnVth)^2', 0); > 

 

This adds the NMOS current to the optimization object in the netlist object.  For the 

optimization there are a varA and a varB.  VarA are written to the AMPL output file 

first.  Next the small signal parameters are written as a function of the coefficients of 

equations and device geometry.  Finally varB is written to the AMPL output file.  The 

last parameter is for debugging. 

 

<netlist = add_opt_object(netlist, 'varA MpId=MpCurFac*(MpW/(MpL-

2*LdPmos))*(Vdd-Vpbias-MpVth)^2', 0);> 

 

This adds the PMOS current to the optimization object in the netlist object.   

 

<netlist = add_opt_object(netlist, 'varB Cf=MnCgdOvl', 0);> 

 

This adds a varB to the optimization object in the netlist object.  Cf is the feedback 

capacitance from the output to the input. 

 

<netlist = add_opt_object(netlist, 'varB Co=c1oad + MnCdb + MpCdb + 

MpCgdOvl', 0);> 

 

This adds a varB to the optimization object in the netlist object.  Co is the total 

capacitance at the output 

 

<netlist = add_opt_object(netlist, 'varB Gdo=MnGds + MpGds', 0);> 

 

This adds a varB to the optimization object in the netlist object.  Gdo is the output 

resistance of the common source amplifier. 

 

<netlist = add_opt_object(netlist, 'varB unityGain=sqrt(-Gdo^2 + 

MnGm^2)/(2*sqrt(Co*(2*Cf + Co))*pi)', 0);> 

 

This adds a varB to the optimization object in the netlist object.  This is the equation 

for the unity gain frequency. 

   

<netlist = add_opt_object(netlist, 'varB 

thermalNoise=sqrt(4*k*(T+270)*(2/(MnGm*3) + 2*MpGm/(3*MnGm^2)))', 0); > 

 

This adds a varB to the optimization object in the netlist object.  This is the equation 

for the input referred thermal noise.  Note the long channel approximation is used for 

the thermal noise equation. 
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<netlist = add_opt_object(netlist, 'varB DcGain=MnGm/(Gdo)', 0);> 

 

This adds a varB to the optimization object in the netlist object.  This is the equation 

for the DC Gain of the circuit. 

 

<netlist = add_opt_object(netlist, 's.t. SatP : out <= Vpbias + MpVth', 0);> 

 

This adds a constraint to the optimization object in the netlist object.  This makes sure 

the PMOS remains in saturation.  The minimum and maximum geometry constraints 

are added automatically. 

 

<netlist = add_opt_object(netlist, 's.t. EqualCurrent : MnId ==  MpId', 0);> 

 

This adds a constraint to the optimization object in the netlist object.  This makes the 

current in the PMOS and NMOS transistor equal. 

 

<netlist = add_opt_object(netlist, 's.t. Gain : DcGain >= MinDcGain', 0);> 

 

This adds a constraint to the optimization object in the netlist object.  This makes sure 

the DC gain is greater than or equal to the allowable minimum. 

 

<netlist = add_opt_object(netlist, 's.t. Thermal : thermalNoise<=MaxThermalNoise', 

0);> 

 

This adds a constraint to the optimization object in the netlist object.  This makes sure 

the input referred thermal noise is less than or equal to the allowable maximum. 

 

<netlist = add_opt_object(netlist, 's.t. CUnityGainFreq : unityGain >=  

MinUnityGainFreq', 0);> 

 

This adds a constraint to the optimization object in the netlist object.  This makes sure 

the unity gain frequency is greater than or equal to the allowable minimum. 

 

<netlist = add_simulation_object(netlist, 'name=typ  mosfet=NmosTyp_PmosTyp 

vdd=3.3 temperature=25 enable', 0);> 

 

This adds a simulation object in the netlist object.  This simulation is the typical 

simulation and has the name "typ".  The mosfet model is "NmosTyp_PmosTyp ", the 

power supply is 3.3 volt, and the temperature is 25C.  The enable parameter tells the 

software to run this simulation when SPICE is called. 

 

<netlist = add_simulation_object(netlist, 'name=bcs  mosfet=NmosTyp_PmosTyp 

vdd=3.6 temperature=25', 0);> 

 

This adds a simulation object in the netlist object.  This simulation is the best case 

simulation.  For this case the power supply is raised to 3.6 volts. 
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<netlist = add_simulation_object(netlist, 'name=wcs  mosfet=NmosTyp_PmosTyp 

vdd=3.0 temperature=25', 0);> 

 

This adds a simulation object in the netlist object.  This simulation is the worst case 

simulation.  For this case the power supply is dropped to 3.0 volts. 

 

<netlist = add_simulation_object(netlist, 'maxIteration=10', 0); > 

 

If the circuit doesn't meet spec when simulated over the corners then the spec is 

adjusted and the process is repeated.  The maxIteration variable tells the maximum 

times the process will be repeated.  

 

<netlist = add_bias_object(netlist, 'remove=Vpbias', 0);> 

 

This adds a bias object in the netlist object.  The bias network is created after the 

optimization.   This tells the software to remove the voltage source Vpbias when 

creating the bias network. 

 

<netlist = add_bias_object(netlist, 'element = Ibias pbias 0 DC 10u', 0);> 

 

This adds a bias object in the netlist object.  This tells the software to add a current 

source when creating the bias network. 

 

<netlist = add_bias_object(netlist, 'element = Mb pbias pbias rail rail pmos', 0);> 

 

This adds a bias object in the netlist object.  This tells the software to add a transistor 

when creating the bias network.  Since the lengths and widths are not specified they 

will be initialized to minimum geometry and will be over written later.    

 

<netlist = add_bias_object(netlist, 'constraint = node=out Mb.l=MpL Mb.w=MpW 

vary=Ibias copyCurrent=Mp.id percentVar=20 numSteps=10', 0);> 

 

This adds a bias object in the netlist object.  This tells the software how to design the 

bias network.  The parameter "node=out" tells the software to make the voltage at 

node "out" the same after adding the bias network.  The parameter "Mb.l=MpL" 

makes the length of Mb equal to the length of Mp.  The parameter "Mb.w=MpW" 

makes the width of Mb equal to the length of Mp.  The parameter "vary=Ibias" tells 

the software to sweep Ibias and measure the bias current that gives the desired output 

voltage.  The parameters "copyCurrent=Mp.id percentVar=20 numSteps=10" tells the 

software how much to vary Ibias.  The parameter "copyCurrent=Mp.id" is the center 

point of the sweep of Ibias.  The parameter "percentVar=20" and "numSteps=10" tells 

the software to vary the current ±20% in 10 steps.   

 

<netlist = add_bias_object(netlist, 'maxIteration=10', 0);> 

 

This sets the max number of iterations for generating the bias circuit.  If when the 

bias network is completed the bias voltage is not within the dc spec set by the DC 
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constraints then the number of steps is doubled and the process repeated until 

developing the bias circuit or reaching the max number of iterations. 

 

<netlist = run_Masters_Project(netlist, 0);> 

 

This runs algorithm outlined in the section titled Common Source Amp and BSIM3 

SPICE Models  
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■Appendix D – Matlab Functions 
 

The following table lists the Matlab functions and the number of lines of code for 

each function.  The number of lines of code includes comments, debug code, and 

white space.  

    

 

 

 

 

Matlab Function Lines of Code

1 add_ac_object 104

2 add_bias_object 215

3 add_cap_object 65

4 add_current_object 108

5 add_dc_constraint_object 202

6 add_dc_sweep_object 101

7 add_mosfet_object 176

8 add_netlist_element 72

9 add_op_object 43

10 add_opt_object 295

11 add_process_01 61

12 add_simulation_object 146

13 add_tsmc35_process 237

14 add_tsmc35_process_no_bin 61

15 add_voltage_object 108

16 adjustTransistorSizeForDcVoltage 287

17 bin_mosfet 179

18 change_dc_voltage 74

19 check_all_spec 57

20 check_all_transistors_in_sat 81

21 check_and_adjust_spec 325

22 check_and_adjust_spec_for_all_sims 217

23 check_dc_bias_voltage 101

24 check_geo_sizes 114

25 check_opt_equations 335

26 check_spec 211

27 convert_string_to_float 26

28 copy_new_values_into_netlist 204

29 enable_simulation 69

30 evaluate_equation 122

31 get_ideal_voltage_from_dc_constraint 64

32 get_node_voltage 56

33 get_opt_position 28

34 get_param_constraint 44

35 get_simulated_parameter_value 63

36 get_simulation_position 28

37 getNetlistValue 46

38 is_in_netist 41

39 is_spice_ran 42

40 is_valid_netlist 37

41 isMosfetInNetlist 38

42 make_bias_network 375
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Note that this project contains more than 10,000 lines of code. 

43 makeCoef 136

44 print_device_sizes_and_specs 83

45 print_device_sizes 60

46 print_error_message 28

47 print_node_voltages 50

48 printNetlist 20

49 printObject 444

50 printOptVariables 93

51 printParam 37

52 read_ampl_results 219

53 read_value_from_netlist 84

54 readTopSpiceAC 158

55 readTopSpiceDcSweep 157

56 readTopSpiceMosfetOpPoint 405

57 remove_blanks_from_string 13

58 remove_dc_sweep_from_netlist 74

59 remove_instance_from_netlist 81

60 reset_SPICE_Parameters 59

61 run_all_simulations 458

62 run_Masters_Project 155

63 run_opt 744

64 run_opt_with_spice 222

65 run_top_spice 454

66 separateStringIntoParts 67

67 top_cs_amp 99

68 top_cs_amp_various_starting_points 148

69 top_two_stage_op_amp 64

70 write_instance_dot_value_to_netlist 139

71 write_param_constraint 46

72 write_param_constraint_internal 46

73 writeNetlistValue 46

Total 10147
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