

Automated Device Sizing to Optimize the

Performance of CMOS Operational Amplifiers

Brian Downing

Northern Arizona University

March 28, 2005

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
2 of 32

■Table of Contents

Introduction... 3

Review of Prior Work... 3

This Work ... 4

General Approach ... 4

Implementation ... 5

Results... 8

Common Source Amplifier with Level 1 SPICE Model .. 8

Common Source Amplifier with BSIM3 SPICE Model... 11

A Two Stage Op-Amp .. 16

Further Work... 17

Conclusion .. 17

Acknowledgments... 18

Appendix A – Coefficients of Equations .. 19

Appendix B – Adjust Widths for DC.. 21

Appendix C – Software Interface ... 23

Appendix D – Matlab Functions... 30

References... 32

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
3 of 32

■Introduction

Analog design is often a major bottleneck in the production of integrated circuits. The

ability to overcome this bottleneck can have a major impact on the commercial success

of a company. The first company whose product is designed into a socket almost

always wins the majority of the business and sets future standards. The competition

can subsequently win market share only by offering improved performance or lower

cost.

An important component of the analog design bottleneck is the fact that device sizing is

normally done by hand. This process is tedious and time consuming. If device sizing

could be automated, this would decrease the time to market. Automated device sizing

may also lead to improved performance, reduced die size, and lower costs.

Although many attempts have been made to automate the process of device sizing, no

solution has yet been widely accepted by industry. On the contrary: when experienced

analog designers evaluate the algorithms offered by leading CAD vendors, they often

discover basic design errors such as transistors not being biased in the saturation region.

The strategic goal of this project was to design and implement an algorithm to automate

device sizing during analog design for CMOS operational amplifiers (op-amps). The

organization of this report is as follows. The first section is a review of prior work in

automated device sizing for analog circuits. The second section discusses the approach

and implementation aspects of this work. The third section presents the results of this

work. The fourth section suggests further work that could be done in this area. The

fifth section presents the conclusions of the project. The remainder of the report

contains acknowledgments, references, and appendixes.

■Review of Prior Work

There has been a surge of interest in automated analog design during the past few years

[1]. A variety of different approaches can be found in literature [2-4]. The different

approaches can be categorized into three categories: 1) Layout-based, 2) Knowledge-

based, and 3) Optimization-based [1].

The layout approach is similar to digital synthesis in that it assembles predefined

layouts. This method does not provide enough flexibility to be usable in industry [1].

Knowledge-based methods model the techniques of analog designers. Although this

method is very fast, setting up the problem is very time consuming and requires an

experienced analog circuit designer.

Optimization based methods take a “black box” approach to the problem. An objective

function is defined, and independent variables are adjusted to maximize or minimize

the objective function. Optimization-based methods can be divided into two sub-

categories: a) circuit simulation based optimization and b) analytical equation based

optimization [1]. The simulation based method uses a circuit simulator such as SPICE

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
4 of 32

within the optimization loop to determine circuit performance. The results are very

accurate but the approach tends to be slow. The use of simplified analytical equation

based models trades off a loss of accuracy for an improvement in speed.

■This Work

● General Approach

The algorithm that is developed and implemented in this work is knowledge-based

and uses analytical equations to describe device behavior. It is modeled after the way

seasoned analog circuit designers design circuits. The flow chart below depicts how

circuits are typically designed:

This is an iterative process that involves hand calculations, SPICE circuit simulations,

and the assessment of solutions. The most challenging part is performing the hand

calculations. Another challenging part is evaluating the trade-offs between different

specifications. Since optimization software is used in this work, the balance between

the different specifications must be defined a priori. It is then taken care of within the

software. Another challenging part of analog design is accounting for phenomena

that SPICE does not model. For example SPICE does not in its native form model

device mismatch and it also does not model kT/C noise in switched capacitor circuits.

This work does not consider phenomena that are not modeled in SPICE.

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
5 of 32

A high level flow chart of the algorithm used in this work is shown below:

The key difference is that the hand calculations are replaced with numerical

optimization software. In order to make this replacement the equations for the

performance have to be input into the software. Since hand calculations are part of

the design process this does not represent additional work for the designer. In fact it

saves time since the designer does not have to make approximations and then verify

that the approximations are valid. When circuits are designed the equations must be

greatly simplified to be useful to the designer. Making these approximations is a

tedious job and typically costs ~20% accuracy when compared to detailed SPICE

models. Since all the calculations are performed by software this eliminates the

approximation errors.

There is typically a wide range of device sizes that will meet a given specification.

The use of numerical optimization software allows the computer to account for all the

trade-offs to determine a better solution than a designer is likely to achieve using

intuition to guess where the optimal solution is. Typically in industry the designer

will stop once a solution that meets all specifications is identified. This is mainly

because of time pressures as companies are trying to beat their competitors into the

market. A secondary reason is that because of the non-linear relationships and

competing objective functions it is a very difficult process to solve for a more optimal

solution.

In order to manufacture a circuit the layout must be on grid. For this work the grid is

ignored. Others have solved this problem by either snapping to a grid after the

optimization is complete or by programming the problem as an integer problem

where the integer is set by the grid spacing.

●Implementation

The project was implemented in three phases of escalating complexity. The first

phase focuses on an NMOS common source amplifier with a PMOS active load. For

SPICE circuit simulations a level 1 model is used. This allows the optimization

software to use the same equations as the SPICE circuit simulator.

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
6 of 32

The second phase is the same common source amplifier, but using a BSIM3 SPICE

model. First order hand calculations are used. To fit the first order equations to the

SPICE circuit simulations a technique termed ‘making coefficients of equations’ is

used. This is discussed further later.

Phase 3 is a two-stage operational-amplifier with a BSIM3 SPICE model. The first

stage is an NMOS differential amplifier and the second stage is a PMOS common

source amplifier.

All the software was selected so the project could be completed on a PC platform.

The top level programming language is Matlab [5]. Mathematica [6] is used to derive

equations and for small signal analysis. All SPICE simulations are run with

TopSPICE [7]. The optimization part is written in AMPL [8] which is a high level

optimization modeling language. AMPL requires a solver for the optimization

problem. The decision to use AMPL was made so that different solvers could be used

without reformulating the optimization problem.

For this project multiple nonlinear AMPL solvers are used. The problem was

formatted in its native form meaning that the width and length of the transistors are in

units of microns. Due to this poor scaling the optimization solvers sometimes give

solutions that do not meet the constraints. To avoid this problem the solutions are

verified against the constraints and solutions that do not meet the constraints are

rejected. The first solver is DONLP2 [9] which uses a variant of the SQP-method

(sequential quadratic programming). The second solver is MINOS [10] which uses a

projected Lagrangian approach. The third solver is Knitro [11] which allows the user

to select between the interior point method and the active set algorithm. The fourth

solver is SNOPT [12] which uses the SQP method. The fifth solver is LOQO [13]

which uses an infeasible primal-dual interior-point method. The sixth solver is

IPOPT [14] which uses the interior point method.

One important specification of a circuit is that its DC voltages are in a range where all

MOSFET’s remain in saturation. For this project a technique is used where the bias

voltages and lengths are fixed and the widths are varied to give the desired DC

voltages. For this paper this method is called ‘adjust widths for DC’. More

information can be found in appendix B.

In order to make the project independent of the SPICE model, first order model

equations are used and the coefficients are extracted from the SPICE simulations.

The following describes how the coefficients of equations are extracted for the drain

current.

First Order Drain Current Equation:

)1()(
22

2
VdsVtVgs

LdL

WCox
Id λ

µ
+−

−
=

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
7 of 32

Coefficient Equation for Drain Current:

−

−
= 2)(

2
* VtVgs

LdL

W
FactorCurrentId

To calculate the <Current Factor> a SPICE simulation is run and the SPICE data is

plugged into the equation. Since this is only an approximation the coefficients are

recalculated when a transistor size or bias voltage changes.

The remaining equations and their associated coefficients of equations are defined

Appendix A.

The TSMC 0.35µ BSIM3 SPICE models were used during phase 2 and phase 3.

These models are “binned”, which means the model is different for different device

sizes. The software automatically takes care of the binning by changing the model

that each transistor calls.

The following diagram shows the optimization procedure under typical conditions:

The first step is to set the internal specification to the user defined specification. This

is done to account for the approximations used. For example if the specification for

DC gain is 50 V/V and when the optimization is complete the DC gain is 45 V/V then

the internal gain is increased for the next iteration. The loop is repeated until either

all the specs are met or the max iteration count is reached. The next step is to adjust

the widths for DC. This makes sure all the transistors are at their desired DC values

for the next steps. Then the coefficients of equations are calculated. This fits the

more complex MOSFET equations to the level 1 equations. Now the numerical

optimization problem is formulated and executed with AMPL. Multiple solvers for

AMPL are run and the optimal solution that meets the constraints is taken. Next

SPICE is run with the values returned from the optimization software. If the circuit

does not meet the DC performance spec then the widths are adjusted for DC. Now

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
8 of 32

the AC specs are checked. If the specifications are met then the loop is exited. If the

AC specifications are not meet then the internal specifications are adjusted and the

loop is repeated as long as the max iteration count is not reached.

The following diagram shows the complete algorithm:

As is done in industry, the circuit is designed for typical conditions, then the bias

circuit is designed, and then the circuit is simulated over process, temperature range,

and power supply variations. If any of the corner simulations fail then the worst

failure case is used to adjust the internal spec for the next iteration. A maximum

number of iterations is always specified so that the process does not repeat forever.

To design the bias circuit the user specifies the device size of the bias network as a

function of the other device sizes in the circuit. For example, with a simple current

mirror the user would tell the program to make the current mirror transistor the same

size as the load transistor in the amplifier. The program then sweeps the DC

reference current until the desired output voltage is reached.

■Results

●Common Source Amplifier with Level 1 SPICE Model

The common source amplifier is optimized with the constraints unity gain frequency,

DC gain, and input referred thermal noise. Below are the equations for these 3

constraints.

Unity gain frequency for a common source amp being driven at the gate of the

NMOS in Hertz:

)2(

,

2

1 22

CoCfCo

GdonGm
fu

+

−
=

π

DC gain:

Gdo

nGm
A DCV

,
, =

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
9 of 32

Input referred thermal noise:

+=

2,
,

,

3

2

,3

2
4

nGm

pGm

nGm
TkV InputNOISE [15 p.226]

Where:

 nCgdOvlCf ,=

 pCgdOvlpCdbnCdbCloadCo ,,, +++=

 pGdsnGdsGdo ,, +=

 Gm,n is NMOS transconductance

 Gm,p is PMOS transconductance

 Gds,n is NMOS output conductance

 Gds,p is PMOS output conductance

 CgdOvl,n is the NMOS gate to drain overlap capacitance

 CgdOvl,p is the PMOS gate to drain overlap capacitance

Cdb,n is the NMOS drain to bulk capacitance

 Cdb,p is the PMOS drain to bulk capacitance

 Cload is the load capacitance

For the common source amplifier the original spec is DC gain and the goal of the

program is to minimize gate area. One unexpected feature is that if the input DC

voltage of the NMOS transistor is fixed and the output voltage is fixed then the DC

gain is fixed. This is not the case when a higher order MOSFET is used in SPICE.

Next bandwidth and thermal noise are added. The program performed as expected

with these constraints. When the program is given specifications that are easy to

meet (e.g. low bandwidth and high thermal noise) then the software returns the

minimum size devices as expected. As the specifications are made more difficult to

achieve (increased bandwidth and decreased noise) the device sizes increase in an

anticipated fashion.

At this point in the project the only optimization solver used is DONLP2. Most of the

subsequent problems that were encountered were traced to DONLP2. The first major

problem is that if DONLP2 is given a specification that cannot be meet then it will

put a high value in a variable it calls infeasibility but will return a set of lengths and

widths as if it were able to solve the problem. Once this problem was discovered it

was simple to account for, but understanding the problem took a great amount of

time. The second major problem was that DONLP2 was not returning the expected

values. The first time this was encountered the issue turned out to be that the default

resolution in DONLP2 was too large for the application. Once the tolerance was

adjusted the software performed as expected. The second time the problem of

DONLP2 returning an unexpected value, it turned out to be that DONLP2 was getting

stuck in a local minimum instead of finding the global minimum. This is a limit of

the optimization software that can only be corrected by switching to a program that

has global convergence.

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
10 of 32

Results of a test case with the following constraints will be presented. The goal of the

test case is to minimize device area from different initial conditions, subject to (s.t.)

the following conditions:

Hzfts u 1.. ≥

VVts InputNoise 1.. , ≤

MpVthVpbiasVts DCOut +≤,..

MpIdMnIdts =..

µ5.. ≥Wpts

µ5.. ≥Lpts

µ5.. ≥Wnts

µ5.. ≥Lnts

Where:

MpVth = PMOS threshold voltage

MnId = NMOS drain current

MpId = PMOS drain current

The following tables show the results that were obtained:

Start End Start End Start End

Wp 5u 5u 5u 5u 5u 5u

Lp 5u 5u 5u 5u 5u 5u

Wn 5u 5u 5u 5u 5u 5u

Ln 5u 5u 5u 5u 5u 5u

Vpbias 3 2.00614 4 2.00617 2 2.00617

Case 1.1 Case 1.2 Case 1.3

Start End Start End Start End

Wp 100u 5u 100u 5u 50u 5u

Lp 10u 5u 10u 5u 30u 5u

Wn 100u 5u 100u 5u 50u 5u

Ln 10u 5u 10u 5u 30u 5u

Vpbias 3 2.00612 2 2.00614 3 2.00617

Case 1.4 Case 1.5 Case 1.6

Start End Start End Start End

Wp 50u 5u 10u 5u 10u 5u

Lp 30u 5u 8u 5u 8u 5u

Wn 50u 5u 50u 5u 50u 5u

Ln 30u 5u 30u 5u 30u 5u

Vpbias 2 2.00612 3 2.00613 2 2.00612

Case 1.7 Case 1.8 Case 1.9

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
11 of 32

Start End Start End Start End

Wp 10u 5u 10u 5u 10u 5.01408u

Lp 8u 5u 8u 5u 8u 7.10616u

Wn 50u 5u 50u 5u 50u 5u

Ln 30u 5u 30u 5u 30u 5u

Vpbias 2.5 2.00615 4 2.00616 1.5 1.5999

Case 1.10 Case 1.11 Case 1.12

Note that all cases except Case 12 found the minimal device sizes, which is what is

expected. For case 12 the PMOS transistor starts in the triode region and finishes on

the boundary between saturation and triode. Since the equations assume saturation,

the minimal device sizes are not found. Since the power supply is 5 volts the choice

of Vpbias = 1.5 volt is a very poor starting point.

●Common Source Amplifier with BSIM3 SPICE Model

The second phase of the project treated the common source amplifier with a BSIM3

SPICE model. There are issues running TopSPICE with the TSMC 0.35µ models.

Since Northern Arizona University has a non-disclosure agreement concerning the

TSMC models the author was not able to send TopSPICE a test case to solve this

problem. The decision was therefore made not to vary the models in this project.

The code is written so that the models can be varied but the models are always set to

typical models. Temperature also causes problems with TopSPICE and the TSMC

0.35µ models. The TSMC models are written for HSPICE and TopSPICE claims to

be compatible with HSPICE. However TopSPICE does not implement some of the

HSPICE temperature model cards. This was found to cause some very strange results

over temperature. The decision was therefore made not to vary temperature in the

project. As a result, the corner simulations consist of only varying the power supply.

For the bias circuit it was originally planned that the input bias current would be

specified and the program would adjust the bias transistor to get the correct bias

voltage. Since the program is optimizing gate area the circuits have large Vgs values.

In order to get a large Vgs from a diode connected transistor the width has to be

small. In practice it was found that the widths would have to be smaller than the

minimum allowed width. Due to transistor sizes leaving their allowable range the

design bias network method was changed. Since typically in industry the circuit

designer is given the bias current as a specification this project fails to develop a

practical bias circuit. But since designing the bias network is a small part of

designing an op-amp the program can be used to design everything except the bias

network in practical applications.

The following shows the results for the common source amplifier with a BSIM3

SPICE model. The left column shows the optimization variables, AC constraints, DC

node voltage constraints, and run time. There are DC constraints on Vpbias to keep

the PMOS in saturation. Each test case is labeled with Case X and shows the start

and end values for the optimization variables and constraints mentioned above.

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
12 of 32

The following shows constraints that are not shown in tables:

MpVthVpbiasVts DCOut +≤,..

MpVthVpbiasVddts ≥−..

MpIdMnIdts =..

µ4.0.. ≥MpWts

µ35.0.. ≥MpLts

µ4.0.. ≥MnWts

µ35.0.. ≥MnLts

Where

MpVth = PMOS threshold voltage

MnId = NMOS drain current

MpId = PMOS drain current

MpW = width of PMOS Mp

MpL = length of PMOS Mp

MnW = width of NMOS Mn

MnL = length of NMOS Mn

Vpbias = bias voltage for PMOS Mp

Vdd = power supply = 3.3 volts

Cases 1 through 18 are for constraints that are very easy to satisfy. They test the

ability of the algorithm to converge from different initial points. Cases 19 through 26

reveals how the optimized designs behave when the constraints are made more

difficult to meet.

Start End Start End Start End

MpW 0.4u 0.401049u 0.4u 0.40292u 0.4u 0.400388u

MpL 0.35u 0.35u 0.35u 0.35u 0.35u 0.35u

MnW 0.4u 0.4u 0.4u 0.4u 0.4u 0.4u

MnL 0.35u 0.35u 0.35u 0.35u 0.35u 0.35u

Vpbias 1.5694 1.571 2.3 1.573 2 1.57

DcGain >= 1 20.1043 20.1216 79.3099m 20.1122 429.458m 20.1108

unityGain >= 1 13.8855M 13.8831M 0 13.8842M 0 13.8845M

thermalNoise <= 1 13.366n 13.3706n 73.8005n 13.3747n 29.046n 13.3677n

Vdc_out = 1.65 +/- 5m 1.64988 1.64652 0.034707 1.648 0.132794 1.64857

Run Time

Case 2.1 Case 2.2 Case 2.3

15.4233 min 8.36568 min 14.4713 min

The PMOS width is not the minimum width of 0.4µ as would be expected with

constraints that are easy to satisfy (small DC gain, small unity gain frequency, and

large thermal noise). This is because of the first order DC bias models. The

optimization software returns a width of 0.4µ but because it does not meet the DC

constraints, the program tweaks in the width of the PMOS transistor to get the desired

DC voltage.

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
13 of 32

Start End Start End Start End

MpW 0.4u 0.4u 10u 0.403741u 10u 0.403741u

MpL 0.35u 0.35u 5u 0.35u 5u 0.35u

MnW 0.4u 0.4u 10u 0.4u 10u 0.4u

MnL 0.35u 0.35u 5u 0.35u 5u 0.35u

Vpbias 1.5 1.569 1.4 1.574 2.3 1.574

DcGain >= 1 14.4128 20.0842 1.88677 20.114 64.0863m 20.114

unityGain >= 1 14.1749M 13.8878M 20.6734M 13.8838M 0 13.8838M

thermalNoise <= 1 13.0536n 13.364n 9.1928n 13.3772n 65.2011n 13.3772n

Vdc_out = 1.65 +/- 5m 2.16583 1.65342 2.91497 1.64753 0.028661 1.64753

Run Time

Case 2.4 Case 2.5 Case 2.6

14.5413 min 12.3918 min 10.6275 min

Start End Start End Start End

MpW 10u 0.403741u 10u 0.403741u 10u 0.40292u

MpL 5u 0.35u 5u 0.35u 5u 0.35u

MnW 10u 0.4u 10u 0.4u 1u 0.4u

MnL 5u 0.35u 5u 0.35u 5u 0.35u

Vpbias 2 1.574 1.5 1.574 1.4 1.573

DcGain >= 1 391.273m 20.114 2.32032 20.114 110.48m 20.1122

unityGain >= 1 0 13.8838M 21.9865M 13.8838M 0 13.8842M

thermalNoise <= 1 23.0611n 13.3772n 9.34513n 13.3772n 30.8094n 13.3747n

Vdc_out = 1.65 +/- 5m 0.13062 1.64753 2.86465 1.64753 3.27142 1.648

Run Time

Case 2.7 Case 2.8 Case 2.9

9.59413 min 12.1538 min 8.34668 min

Start End Start End Start End

MpW 10u 0.400388u 10u 0.403741u 10u 0.40292u

MpL 5u 0.35u 5u 0.35u 5u 0.35u

MnW 1u 0.4u 1u 0.4u 1u 0.4u

MnL 5u 0.35u 5u 0.35u 5u 0.35u

Vpbias 2.3 1.57 2 1.574 1.5 1.573

DcGain >= 1 953.214m 20.1108 226.154m 20.114 119.464m 20.1122

unityGain >= 1 0 13.8845M 0 13.8838M 0 13.8842M

thermalNoise <= 1 43.0872n 13.3677n 34.1892n 13.3772n 31.1062n 13.3747n

Vdc_out = 1.65 +/- 5m 3.14578 1.64857 3.24389 1.64753 3.26916 1.648

Run Time

Case 2.10 Case 2.11 Case 2.12

14.5506 min 9.09157 min 9.56558 min

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
14 of 32

Start End Start End Start End

MpW 100u 0.403741u 100u 0.403741u 100u 0.403741u

MpL 5u 0.35u 5u 0.35u 5u 0.35u

MnW 100u 0.4u 100u 0.4u 100u 0.4u

MnL 5u 0.35u 5u 0.35u 5u 0.35u

Vpbias 1.4 1.574 2 1.574 1.5 1.574

DcGain >= 1 1.84893 20.114 421.762m 20.114 2.26213 20.114

unityGain >= 1 169.735M 13.8838M 0 13.8838M 181.205M 13.8838M

thermalNoise <= 1 2.90312n 13.3772n 7.07296n 13.3772n 2.94974n 13.3772n

Vdc_out = 1.65 +/- 5m 2.92177 1.64753 0.13834 1.64753 2.87298 1.64753

Run Time

Case 2.13 Case 2.14 Case 2.15

12.1428 min 9.37948 min 12.4422 min

Start End Start End Start End

MpW 1u 0.403741u 1u 0.403741u 1u 0.403741u

MpL 5u 0.35u 5u 0.35u 5u 0.35u

MnW 10u 0.4u 10u 0.4u 10u 0.4u

MnL 5u 0.35u 5u 0.35u 5u 0.35u

Vpbias 1.4 1.574 2.3 1.574 2 1.574

DcGain >= 1 76.1636m 20.114 3.53582m 20.114 17.0158m 20.114

unityGain >= 1 0 13.8838M 0 13.8838M 0 13.8838M

thermalNoise <= 1 39.1671n 13.3772n 286.312n 13.3772n 99.6606n 13.3772n

Vdc_out = 1.65 +/- 5m 0.033637 1.64753 0.001687 1.64753 0.008 1.64753

Run Time

Case 2.16 Case 2.17 Case 2.18

12.4297 min 11.0547 min 9.69527 min

Start End Start End

MpW 0.4u 0.4u MpW 0.4u 0.4u

MpL 0.35u 1.09785u MpL 0.35u 0.871419u

MnW 0.4u 0.4u MnW 0.4u 0.4u

MnL 0.35u 0.794829u MnL 0.35u 0.658168u

Vpbias 1.5694 1.41 Vpbias 1.5694 1.428

DcGain >= 50 20.1043 51.7458 DcGain >= 40 20.1043 42.1438

unityGain >= 1 13.8855M 6.08698M unityGain >= 1 13.8855M 7.38023M

thermalNoise <= 1 13.366n 20.1831n thermalNoise <= 1 13.366n 18.3467n

Vdc_out = 1.65 +/- 5m 1.64988 1.65066 Vdc_out = 1.65 +/- 5m 1.64988 1.6513

Run Time Run Time

Case 2.19 Case 2.20

13.0606 min 12.8914 min

As expected, when the DC gain constraint is increased the length increases while the

width stays at minimum geometry.

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
15 of 32

Start End Start End

MpW 0.4u 0.4u MpW 0.4u 0.426358u

MpL 0.35u 0.624045u MpL 0.35u 0.35u

MnW 0.4u 0.4u MnW 0.4u 1.26543u

MnL 0.35u 0.527732u MnL 0.35u 0.35u

Vpbias 1.5694 1.49 Vpbias 1.5694 0.9413

DcGain >= 30 20.1043 31.9443 DcGain >= 1 20.1043 16.5384

unityGain >= 1 13.8855M 9.24083M unityGain >= 30M 13.8855M 30.0289M

thermalNoise <= 1 13.366n 16.4646n thermalNoise <= 1 13.366n 8.45258n

Vdc_out = 1.65 +/- 5m 1.64988 1.64997 Vdc_out = 1.65 +/- 5m 1.64988 1.64912

Run Time Run Time

Case 2.21 Case 2.22

18.4432 min 52.3952 min

When only bandwidth is increased, the width increases and the length stays at

minimum geometry. Also the Vpbias drops which means there is a larger Vgs for the

PMOS transistor as would be expected for increased bandwidth.

Start End Start End

MpW 0.4u 0.819927u MpW 0.4u 1.73129u

MpL 0.35u 0.35u MpL 0.35u 0.35u

MnW 0.4u 2.01771u MnW 0.4u 3.92324u

MnL 0.35u 0.35u MnL 0.35u 0.35u

Vpbias 1.5694 0.9363 Vpbias 1.5694 0.9569

DcGain >= 1 20.1043 16.116 DcGain >= 1 20.1043 17.5687

unityGain >= 50M 13.8855M 50.0026M unityGain >= 100M 13.8855M 100.002M

thermalNoise <= 1 13.366n 6.54209n thermalNoise <= 1 13.366n 4.63318n

Vdc_out = 1.65 +/- 5m 1.64988 1.64933 Vdc_out = 1.65 +/- 5m 1.64988 1.6477

Run Time Run Time

Case 2.23 Case 2.24

21.4201 min 17.8939 min

Start End Start End

MpW 0.4u 3.20814u MpW 0.4u 6.73432u

MpL 0.35u 0.35u MpL 0.35u 2.59961u

MnW 0.4u 5.07527u MnW 0.4u 9.03107u

MnL 0.35u 0.35u MnL 0.35u 0.959205u

Vpbias 1.5694 1.353 Vpbias 1.5694 0.9009

DcGain >= 1 20.1043 19.0941 DcGain >= 50 20.1043 52.1522

unityGain >= 1 13.8855M 129.938M unityGain >= 100M 13.8855M 101.553M

thermalNoise <= 5n 13.366n 4.22208n thermalNoise <= 5n 13.366n 4.55812n

Vdc_out = 1.65 +/- 5m 1.64988 1.65154 Vdc_out = 1.65 +/- 5m 1.64988 1.64632

Run Time Run Time

Case 2.25 Case 2.26

2.64097 min 29.0641 min

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
16 of 32

For case 25 where the thermal noise constraint is decreased, the width increases and

the length stays at minimum geometry as expected. For case 26 the DC gain

requirement is increased, the bandwidth is increased and the thermal noise is

decreased. As is expected for increased DC gain the lengths increase beyond

minimum geometry. For increased bandwidth and decreased noise the widths

increase beyond minimum geometry.

 ●A Two Stage Op-Amp

The third phase of the project is the optimization of a two stage op-amp. The first

stage is an NMOS differential amplifier and the second stage is a PMOS common

source amplifier.

At the start of this project it was assumed that Mathematica could be used to solve for

the exact small signal equations. The method used for this project was to write the

node equations from the small signal model and use Mathematica to solve theses

equations for the exact transfer function. For the common source amplifier

Mathematica was able to solve the equations in a very short time. But for the two

stage op-amp Mathematica was not able to solve the node equations in a reasonable

about of time. To aid in the understanding of the problem, a discussion of the method

to solve for the unity gain frequency follows.

The transfer function as a function of frequency (f) can be written as:

Part][Imagj Part Real)(+=ftransfer

The magnitude is:
22)()(PartImagPartRealMag +=

The phase is:

= −

PartReal

PartImag
tan 1φ

To solve for the unity gain frequency set:

1=Mag

To calculate the unity gain frequency, solve for the frequency where the above

relationship is met.

The most challenging part of this is breaking the transfer function into the real and

imaginary part. Using the Mathematica function ComplexExpand the program ran

for over five days without finding a solution. Also a custom function to do this was

written but it ran out of computer memory. It was suggested that the program be ran

on a UNIX platform instead of a PC platform. Some users have found Mathematica

to perform better on a UNIX workstation than a PC. But due to not having access to

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
17 of 32

a UNIX version of Mathematica this was not tried. This point is as far as the

implementation and testing proceeded.

■Further Work

As a result of the experience gained during implementation and testing, several

improvements have been identified for future versions of the software. An important

improvement would be to scale the problem so all the variables are on the order of 1

before sending the problem to the optimization software. For this project the variables

were left in their native form and the optimization software was allowed to scale the

problem. Most of the internal scaling algorithms are developed for large numbers and

do not perform well with very small numbers (i.e. for numbers in the µ and n range).

For op-amps formatted in their native form, there are noise levels in the nV range,

transistor sizes in the µm range, bias voltages of a few volts range, DC gains in the

range of 3k to 10k V/V, and bandwidths in the MHz range. This is a huge range of

numbers that causes problems if not scaled properly. For this project the scaling

problem was worked around by using multiple solvers and rejecting solutions that

failed to meet the constraints. Ideally the problem should be scaled before sending it to

the optimization solver and then scaled back after the optimization is complete.

The second area for improvement is to implement the BSIM3 DC model instead of

using the level 1 model. This would minimize the change that the adjust widths for DC

function has to make. But as seen in the “Common Source Amplifier with BSIM3

SPICE Model” section in cases 1 through 18, the optimal width is 0.4µ and the largest

width returned is 0.403741µ. This suggests that implementing the BSIM3 model would

be a great amount of work for a small return.

Finally, as noted in the op-amp section, Mathematica was unable to solve the op-amp

equations in a reasonable amount of time. The first step would be to use Mathematica

on a computer platform like UNIX which is known for better memory management

than Windows. Another approach would be to custom write functions to do this. Also

there are add on packages for Mathematica that may have better performance [16]. The

final approach would be to make approximations. Since the small signal parameters

and DC model already use first order approximations, these additional approximations

may not contribute an unacceptable error.

■Conclusion

This report has described the design and implementation of an algorithm to automate

the device sizing in CMOS Op-Amps. As can be seen through the common source

amplifier with level 1 SPICE models and the common source amplifier with BSIM3

SPICE models, the basic algorithm works well. The primary shortcoming of this

method is that the exact equations for a two stage op-amp could not be solved in a

reasonable amount of time. This is an issue that can be addressed in future work.

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
18 of 32

■Acknowledgments

The author thanks the following people for their contribution to this work:

Dr. Peter Blakey, Northern Arizona University, project advisor

Dr. Paul Flikkema, Northern Arizona University, member project committee

Dr. Phillip Mlsna, Northern Arizona University, member project committee

Dr. Elizabeth Brauer, Northern Arizona University, access to TSMC models

Dr. Hans Mittelmann, Arizona State University, selection of optimization software

Dr. Peter Spellucci, Technische University, Germany, support and guidance for

DONLP2

Robin Lougee-Heimer and Andreas Waechter, IBM, support for IPOPT

Richard Waltz, Ziena Optimization, support for Knitro

Robert Vanderbei, Princeton University, support for Loqo

Dr. Collin McAndrew, Freescale Semiconductor, guidance implementing higher order

SPICE models in this project

Ira Miller, Freescale Semiconductor, analog design guidance

Kendall Moore, IC Media, whose op-amp design methods provided the starting point

for this work

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
19 of 32

■Appendix A – Coefficients of Equations

Below are the first order equations for MOSFETs that are used in this work and the

equivalent coefficient of equation.

First Order Drain Current Equation:

)1()(
22

2
VdsVtVgs

LdL

WCox
Id λ

µ
+−

−
=

Coefficient Equation for Drain Current:

−

−
= 2)(

2
* VtVgs

LdL

W
FactorCurrentId

First Order Gm Equation:

Id
LdL

W
Coxgm

2
2

−
= µ

Coefficient Equation for Gm:

−
= Id

LdL

W
FactorGmgm

2

First Order Gds Equation

Id

LVe
gds =

Coefficient Equation for Gds:

=

Id

L
FactorGdsgds *

First Order Cbd Equation

CdboWCbd *=

Coefficient Equation for Cbd:

WFactorCdbCbd *=

First Order Cbs Equation

CdsoWCbs *=

Coefficient Equation for Cbs:

WFactorCdsCbs *=

First Order Cgd overlap Equation

ovCgdWovCgd ,*, =

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
20 of 32

Coefficient Equation for Cgd overlap:

WFactorovCgdovCgd *,, =

First Order Cgs overlap Equation

ovCgsWovCgs ,*, =

Coefficient Equation for Cgs overlap:

WFactorovCgsovCgs *,, =

First Order Cgd Equation

CgdLovWCgd **=

Coefficient Equation for Cgd:

WFactorCgdCgd *=

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
21 of 32

■Appendix B – Adjust Widths for DC

Adjusting widths for DC is a technique where the bias voltages and lengths are fixed

and the widths are varied to give the desired DC voltages. This guarantees that the

transistors are biased correctly.

To illustrate the adjust widths for DC technique an example is worked. To start with

select vdd = 3.3 volt, Vnbias = 1 volt, Vpbias = 2.3 volt, Wn = 5µm, Ln = 1µm, Wp =

15µm, and Lp = 1 µm.

From SPICE simulation Vout,dc = 54.6mV.

Next a DC Voltage source is placed in the circuit to drive the output to the desired

DC voltage. For this example select Vdc,out = 1.65 volt.

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
22 of 32

From SPICE Simulations Id,NMOS = 87.6µ amp and Id,PMOS = 21.5µ amp. To

adjust for the desired output voltage the following relationship is used.

NewCurrent

NewWidth

OrginalCurrent

OrginalWidth
=

Adjust the PMOS to have the same current as the NMOS therefore

um
u

uu
Wp 61

5.21

6.87*15
==

When SPICE is re-run without the voltage source at the output and with the new Wp

the output voltage is 2 Volt. This is more than the desired output voltage of 1.65 volt

but the process can be repeated till the desired accuracy is obtained.

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
23 of 32

■Appendix C – Software Interface

The final version of the software is written in an object oriented style. The top object

is a netlist object that contains all the SPICE objects, DC constraints objects,

optimization constraints objects, corner simulations objects, and bias circuit objects.

The following describes the Matlab function calls to run the CS Amp with a current

mirror load. Like SPICE this program supports unit postfix i.e. u = 10^-6. The

Matlab command is between the <>.

<netlist = add_tsmc35_process(0);>

This returns a netlist object with the first object being a process object. The TSMC

35 process object contains model paths, minimum and maximum geometry size, and

the different bins. Also contained is the TopSPICE install directory, and TopSPICE

options. The paths in this object have to be changed to work on another computer.

The last parameter is a debug parameter. If set to 1 the function prints out what is

happening else it prints nothing.

<netlist = add_netlist_element(netlist, 'Mn out nbias 0 0 nmos w=0.4u l=0.35u

optimizeWidth=true optimizeLength=true', 0);>

This adds a MOSFET object to the netlist object. The format is the standard SPICE

except for the optimizeWidth and optimizeLength parameters. These parameters tell

the program it can optimize the length and width. In case these values aren't specified

then the default value is true. The last parameter is for debugging, 1 = debug mode

and 0 = production mode.

<netlist = add_netlist_element(netlist, 'Mp out pbias rail rail pmos w=0.4u l=0.35u

optimizeWidth=true optimizeLength=true', 0);>

This adds another MOSFET object to the netlist object. See above for more details.

<netlist = add_netlist_element(netlist, 'Vpbias pbias 0 DC 1.57871

optimizeVoltage=true', 0);>

This adds a voltage source object to the netlist object. This follows the standard

SPICE format except for the optimizeVoltage parameter which tells the software to

optimize the voltage. The default value is true. The last parameter is for debugging.

<netlist = add_netlist_element(netlist, 'Vdd rail 0 DC 3.3 optimizeVoltage=false',

0);>

This adds the power supply to the netlist object. Since the power supply is set by the

system the software does not optimize the power supply.

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
24 of 32

<netlist = add_netlist_element(netlist, 'Vnbias nbias 0 DC 1 optimizeVoltage=false',

0);>

This adds the input voltage source to the netlist object. Since the input voltage is set

from the driving circuit, the voltage is not optimized.

<netlist = add_netlist_element(netlist, 'c1oad out 0 1p optimizeCap=false', 0);>

This adds a capacitor object to the netlist object. This follows the standard SPICE

format except for the optimizeCap parameter which tells the software to optimize the

capacitance value. The default value is true. The last parameter is for debugging.

Since the load capacitance is set by what the circuit is driving it is not optimized.

<netlist = add_netlist_element(netlist, '.op', 0);>

This adds an op point object to the netlist object. This follows the standard SPICE

format. The last parameter is for debugging.

<netlist = add_dc_constraint_object(netlist, 'out=1.65 vary=Mp dontVary=Mn', 0);>

This adds a dc constraint object to the netlist object. The voltage at node "out" is set

to 1.65 volts by adjusting the width of transistor Mp and making the current equal to

the current in transistor Mn. The section on Adjust Widths for DC explains the

method used.

<netlist = add_dc_constraint_object(netlist, 'VoltageTolerance=5m', 0);>

This is the tolerance for the DC output voltage.

<netlist = add_dc_constraint_object(netlist, 'MaxIterations=10', 0);>

This is how many times the program will try to solve for the DC voltage that is within

the voltage tolerance. For the TSMC process it would typically take between 3 and 4

iterations to get the output voltage within 5mV.

<netlist = add_opt_object(netlist, 'installDir=xx, 0);>

This is where the optimization software is installed. The <xx> represents the install

path. The last parameter is for debugging.

<netlist = add_opt_object(netlist, 'resultsDir=xx', 0);>

This is where the optimization results are stored. The <xx> represents the directory

to store the results. The last parameter is for debugging.

<netlist = add_opt_object(netlist, 'optFileName=OptFile', 0);>

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
25 of 32

This sets the name for the input file for the AMPL optimization software. The last

parameter is for debugging.

<netlist = add_opt_object(netlist, 'logFile=AmplLog.txt', 0);>

This sets the name for the output file for the AMPL optimization software. The last

parameter is for debugging.

<netlist = add_opt_object(netlist, 'maxIteration=10', 0);>

This sets in maximum number of iterations the software will try to optimizing the

circuit. The last parameter is for debugging.

<netlist = add_opt_object(netlist, 'equalityTolerance=1n', 0);>

Because of numerical precision there could be an numerical error in the equality

constraints. If an equality constraint is within the equalityTolerance value then they

are considered to be equal. The last parameter is for debugging.

<netlist = add_opt_object(netlist, 'option=solver donlp2', 0);>

This sets the AMPL solver to Donlp2. The code is written so that different solvers

can be used. The last parameter is for debugging.

<netlist = add_opt_object(netlist, 'option=donlp2_options "silent=1 epsx=1e-007"',

0);>

This sets options for Donlp2 solver. By setting the variable silent=1 this limits the

amount of output produced by Donlp2. The variable epsx is the error tolerance. The

last parameter is for debugging.

<netlist = add_opt_object(netlist, 'minimize area: MnW*MnL+MpW*MpL', 0);>

This is the objective function for the optimization. Here gate area is minimized. The

last parameter is for debugging.

<netlist = add_opt_object(netlist, 'param MaxThermalNoise=10n', 0);>

This is a parameter for optimization. Here the MaxThermalNoise is set to 10nV. All

the coefficients of equations are added as param automatically. See the section on

Making Coefficients of Equations for more information. The last parameter is for

debugging.

<netlist = add_opt_object(netlist, 'param MinUnityGainFreq=80M', 0);>

This is a parameter for optimization. Here the MinUnityGainFreq is set to 80MHz.

The last parameter is for debugging.

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
26 of 32

<netlist = add_opt_object(netlist, 'param MinDcGain=100', 0);>

This is a parameter for optimization. Here the MinDcGain is set to 100 V/V. The

last parameter is for debugging.

<netlist = add_opt_object(netlist, 'varA MnId=MnCurFac*(MnW/(MnL-

2*LdNmos))*(Vnbias-MnVth)^2', 0); >

This adds the NMOS current to the optimization object in the netlist object. For the

optimization there are a varA and a varB. VarA are written to the AMPL output file

first. Next the small signal parameters are written as a function of the coefficients of

equations and device geometry. Finally varB is written to the AMPL output file. The

last parameter is for debugging.

<netlist = add_opt_object(netlist, 'varA MpId=MpCurFac*(MpW/(MpL-

2*LdPmos))*(Vdd-Vpbias-MpVth)^2', 0);>

This adds the PMOS current to the optimization object in the netlist object.

<netlist = add_opt_object(netlist, 'varB Cf=MnCgdOvl', 0);>

This adds a varB to the optimization object in the netlist object. Cf is the feedback

capacitance from the output to the input.

<netlist = add_opt_object(netlist, 'varB Co=c1oad + MnCdb + MpCdb +

MpCgdOvl', 0);>

This adds a varB to the optimization object in the netlist object. Co is the total

capacitance at the output

<netlist = add_opt_object(netlist, 'varB Gdo=MnGds + MpGds', 0);>

This adds a varB to the optimization object in the netlist object. Gdo is the output

resistance of the common source amplifier.

<netlist = add_opt_object(netlist, 'varB unityGain=sqrt(-Gdo^2 +

MnGm^2)/(2*sqrt(Co*(2*Cf + Co))*pi)', 0);>

This adds a varB to the optimization object in the netlist object. This is the equation

for the unity gain frequency.

<netlist = add_opt_object(netlist, 'varB

thermalNoise=sqrt(4*k*(T+270)*(2/(MnGm*3) + 2*MpGm/(3*MnGm^2)))', 0); >

This adds a varB to the optimization object in the netlist object. This is the equation

for the input referred thermal noise. Note the long channel approximation is used for

the thermal noise equation.

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
27 of 32

<netlist = add_opt_object(netlist, 'varB DcGain=MnGm/(Gdo)', 0);>

This adds a varB to the optimization object in the netlist object. This is the equation

for the DC Gain of the circuit.

<netlist = add_opt_object(netlist, 's.t. SatP : out <= Vpbias + MpVth', 0);>

This adds a constraint to the optimization object in the netlist object. This makes sure

the PMOS remains in saturation. The minimum and maximum geometry constraints

are added automatically.

<netlist = add_opt_object(netlist, 's.t. EqualCurrent : MnId == MpId', 0);>

This adds a constraint to the optimization object in the netlist object. This makes the

current in the PMOS and NMOS transistor equal.

<netlist = add_opt_object(netlist, 's.t. Gain : DcGain >= MinDcGain', 0);>

This adds a constraint to the optimization object in the netlist object. This makes sure

the DC gain is greater than or equal to the allowable minimum.

<netlist = add_opt_object(netlist, 's.t. Thermal : thermalNoise<=MaxThermalNoise',

0);>

This adds a constraint to the optimization object in the netlist object. This makes sure

the input referred thermal noise is less than or equal to the allowable maximum.

<netlist = add_opt_object(netlist, 's.t. CUnityGainFreq : unityGain >=

MinUnityGainFreq', 0);>

This adds a constraint to the optimization object in the netlist object. This makes sure

the unity gain frequency is greater than or equal to the allowable minimum.

<netlist = add_simulation_object(netlist, 'name=typ mosfet=NmosTyp_PmosTyp

vdd=3.3 temperature=25 enable', 0);>

This adds a simulation object in the netlist object. This simulation is the typical

simulation and has the name "typ". The mosfet model is "NmosTyp_PmosTyp ", the

power supply is 3.3 volt, and the temperature is 25C. The enable parameter tells the

software to run this simulation when SPICE is called.

<netlist = add_simulation_object(netlist, 'name=bcs mosfet=NmosTyp_PmosTyp

vdd=3.6 temperature=25', 0);>

This adds a simulation object in the netlist object. This simulation is the best case

simulation. For this case the power supply is raised to 3.6 volts.

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
28 of 32

<netlist = add_simulation_object(netlist, 'name=wcs mosfet=NmosTyp_PmosTyp

vdd=3.0 temperature=25', 0);>

This adds a simulation object in the netlist object. This simulation is the worst case

simulation. For this case the power supply is dropped to 3.0 volts.

<netlist = add_simulation_object(netlist, 'maxIteration=10', 0); >

If the circuit doesn't meet spec when simulated over the corners then the spec is

adjusted and the process is repeated. The maxIteration variable tells the maximum

times the process will be repeated.

<netlist = add_bias_object(netlist, 'remove=Vpbias', 0);>

This adds a bias object in the netlist object. The bias network is created after the

optimization. This tells the software to remove the voltage source Vpbias when

creating the bias network.

<netlist = add_bias_object(netlist, 'element = Ibias pbias 0 DC 10u', 0);>

This adds a bias object in the netlist object. This tells the software to add a current

source when creating the bias network.

<netlist = add_bias_object(netlist, 'element = Mb pbias pbias rail rail pmos', 0);>

This adds a bias object in the netlist object. This tells the software to add a transistor

when creating the bias network. Since the lengths and widths are not specified they

will be initialized to minimum geometry and will be over written later.

<netlist = add_bias_object(netlist, 'constraint = node=out Mb.l=MpL Mb.w=MpW

vary=Ibias copyCurrent=Mp.id percentVar=20 numSteps=10', 0);>

This adds a bias object in the netlist object. This tells the software how to design the

bias network. The parameter "node=out" tells the software to make the voltage at

node "out" the same after adding the bias network. The parameter "Mb.l=MpL"

makes the length of Mb equal to the length of Mp. The parameter "Mb.w=MpW"

makes the width of Mb equal to the length of Mp. The parameter "vary=Ibias" tells

the software to sweep Ibias and measure the bias current that gives the desired output

voltage. The parameters "copyCurrent=Mp.id percentVar=20 numSteps=10" tells the

software how much to vary Ibias. The parameter "copyCurrent=Mp.id" is the center

point of the sweep of Ibias. The parameter "percentVar=20" and "numSteps=10" tells

the software to vary the current ±20% in 10 steps.

<netlist = add_bias_object(netlist, 'maxIteration=10', 0);>

This sets the max number of iterations for generating the bias circuit. If when the

bias network is completed the bias voltage is not within the dc spec set by the DC

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
29 of 32

constraints then the number of steps is doubled and the process repeated until

developing the bias circuit or reaching the max number of iterations.

<netlist = run_Masters_Project(netlist, 0);>

This runs algorithm outlined in the section titled Common Source Amp and BSIM3

SPICE Models

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
30 of 32

■Appendix D – Matlab Functions

The following table lists the Matlab functions and the number of lines of code for

each function. The number of lines of code includes comments, debug code, and

white space.

Matlab Function Lines of Code

1 add_ac_object 104

2 add_bias_object 215

3 add_cap_object 65

4 add_current_object 108

5 add_dc_constraint_object 202

6 add_dc_sweep_object 101

7 add_mosfet_object 176

8 add_netlist_element 72

9 add_op_object 43

10 add_opt_object 295

11 add_process_01 61

12 add_simulation_object 146

13 add_tsmc35_process 237

14 add_tsmc35_process_no_bin 61

15 add_voltage_object 108

16 adjustTransistorSizeForDcVoltage 287

17 bin_mosfet 179

18 change_dc_voltage 74

19 check_all_spec 57

20 check_all_transistors_in_sat 81

21 check_and_adjust_spec 325

22 check_and_adjust_spec_for_all_sims 217

23 check_dc_bias_voltage 101

24 check_geo_sizes 114

25 check_opt_equations 335

26 check_spec 211

27 convert_string_to_float 26

28 copy_new_values_into_netlist 204

29 enable_simulation 69

30 evaluate_equation 122

31 get_ideal_voltage_from_dc_constraint 64

32 get_node_voltage 56

33 get_opt_position 28

34 get_param_constraint 44

35 get_simulated_parameter_value 63

36 get_simulation_position 28

37 getNetlistValue 46

38 is_in_netist 41

39 is_spice_ran 42

40 is_valid_netlist 37

41 isMosfetInNetlist 38

42 make_bias_network 375

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
31 of 32

Note that this project contains more than 10,000 lines of code.

43 makeCoef 136

44 print_device_sizes_and_specs 83

45 print_device_sizes 60

46 print_error_message 28

47 print_node_voltages 50

48 printNetlist 20

49 printObject 444

50 printOptVariables 93

51 printParam 37

52 read_ampl_results 219

53 read_value_from_netlist 84

54 readTopSpiceAC 158

55 readTopSpiceDcSweep 157

56 readTopSpiceMosfetOpPoint 405

57 remove_blanks_from_string 13

58 remove_dc_sweep_from_netlist 74

59 remove_instance_from_netlist 81

60 reset_SPICE_Parameters 59

61 run_all_simulations 458

62 run_Masters_Project 155

63 run_opt 744

64 run_opt_with_spice 222

65 run_top_spice 454

66 separateStringIntoParts 67

67 top_cs_amp 99

68 top_cs_amp_various_starting_points 148

69 top_two_stage_op_amp 64

70 write_instance_dot_value_to_netlist 139

71 write_param_constraint 46

72 write_param_constraint_internal 46

73 writeNetlistValue 46

Total 10147

Automated Device Sizing to Optimize the Performance of CMOS Operational Amplifiers
32 of 32

■References

[1] Sahu, Biranchinath and Dutta, Aloke K. Automatic Synthesis of CMOS

Operational Amplifiers: A Fuzzy Optimization Approach, IEEE Proceedings of the

15
th

 International Conference on VLSI Design, 2002.

[2] M. Ismail and J. Franca, Introduction to Analog VLSI Design Automation, Kluwer

Academic Publishers, London, 1990.

[3] L.R. Carley and R. A. Rutenbar, How to automate analog IC design, IEEE

Spectrum, vol. 25, no 8, pp. 26-30, August 1998

[4] J. H. Huijsing, R. J. Plassche, and W. Sansen, Analog Circuit Design, Kluwer

Academic Publishers, London, 1993.

[5] Matlab website http://www.mathworks.com

[6] Mathematica website http://www.wolfram.com

[7] TopSPICE website http://www.penzar.com

[8] AMPL website http://www.ampl.com

[9] DONLP2 website ftp://plato.asu.edu/pub/ampl/

[10] MINOS website http://www.sbsi-sol-optimize.com/

[11] Knitro website http://www.ziena.com/knitro.html

[12] SNOPT website http://www.sbsi-sol-optimize.com/

[13] LOQO website http://www.sor.princeton.edu/~loqo/

[14] IPOPT website http://www.coin-or.org

[15] Razavi, B. Design of Analog CMOS Integrated Circuits. McGraw-Hill

Education, 2001.

[16] Analog Insydes website http://www.analog-insydes.de/

